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Abstract. Time-domain fundamental solutions and Green dyadics for temporally dispersive,
simple media are introduced. Second forerunner approximations to the electromagnetic fields
from an electric point dipole in unbounded dispersive materials are obtained. Numerical results
for two frequently used material models are presented. Moreover, surface integral representations
of the electromagnetic fields in dispersive media are obtained, and, finally, surface integral
equations are derived for impenetrable and permeable scatterers.

1. Introduction

Time-harmonic fundamental solutions (Green functions) and Green dyadics for simple
(linear, homogeneous, and isotropic) media are well known concepts in electromagnetic
field theory, and their importance in analysing propagation and scattering problems is well
recognized [1–4]. For example, in an unbounded medium, the electric field due to any time-
harmonic current distribution can be written in terms of a three-fold (spatial) convolution of
the Green dyadic and the current density. From this volume representation, approximations
to the far-field pattern can be derived [2]. Fundamental solutions and Green dyadics can
also be used to obtain surface integral representations of the electric and magnetic fields
in dielectric bodies [4, 5]. From these surface integral representations, integral equations
for the tangential components of the electric and magnetic fields at the boundary can be
derived [5]. These integral equations are fundamental in scattering theory.

Most media of any interest are temporally dispersive, i.e. the material parameters depend
on frequency. In fact, it is generally assumed that dispersion is anomalous in certain
frequency bands (absorption bands) [2]. In time-harmonic scattering problems, the above
technique for simple media can obviously be adopted. However, in order to study pulse
propagation phenomena in these media, time-harmonic Green functions are insufficient. One
way to cope with this is to introduce time-domain Green functions. The time-domain Green
functions and dyadics for vacuum are well known [6]. In this paper, the time-domain
fundamental solutions and Green dyadics for temporally dispersive, simple materials are
defined. Furthermore, surface integral representations of the electric and magnetic fields
are derived and used to obtain surface integral equations for the tangential components
of the electromagnetic fields for two standard scattering problems. The complex time
domain electromagnetic field is introduced to simplify the analysis. The advantages with
this complex field are more evident in the analysis of propagation problems in bi-isotropic
media. Green dyadics of temporally dispersive, bi-isotropic materials are discussed in a
subsequent paper.
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This paper is organized as follows. In section 2, the notation is introduced. In section 3,
the constitutive relations of temporally dispersive, simple media are presented and the
appropriate intrinsic temporal integral operators are introduced. In section 4, the retarded
fundamental solution of the dispersive wave operator is presented. In section 5, Green
dyadics for the electric and magnetic fields are defined. The Green dyadic for the complex
time-domain electromagnetic field vector is presented in section 6. In section 7, the explicit
expressions for the electromagnetic fields from an electric point dipole in an unbounded
dispersive medium are obtained and tested numerically. Surface integral representations of
the complex electromagnetic field are accounted for in section 8. In section 9, surface
integral equations for the electromagnetic field are derived for two different scattering
problems. Conclusions are drawn in section 10.

2. Notation and basic theory

In this paper, scalars are denoted in italic style, vectors in italic boldface style, and dyadics
in Roman boldface style. The radius vector is writtenr = uxx+uyy+uzz, whereux , uy ,
anduz are the right-handed Cartesian basis vectors. The modulus of the radius vector is
denoted byr = |r|. The identity dyadic is writtenI = uxux +uyuy +uzuz. Furthermore,
the dyadic differential operators (see [3]),

∇∇ = (∂xux + ∂yuy + ∂zuz)(∂xux + ∂yuy + ∂zuz)
∇ × I = (∂xux + ∂yuy + ∂zuz)× (uxux + uyuy + uzuz)

the first being symmetric and the second antisymmetric, are encountered.
Time is denoted byt . Many temporal integrals appear in this paper, and, for brevity,

the integration limits−∞ and∞ are generally omitted, i.e.∫
. . .dt ′ =

∫ ∞
−∞

. . .dt ′.

The electric and magnetic field intensities at the spacetime point(r, t) areE(r, t) and
H(r, t), respectively, and the corresponding flux densities areD(r, t) andB(r, t). The
current and charge densities areJ(r, t) andρ(r, t), respectively. Standard notation is used
for the speed of light in vacuum,c0, the intrinsic impedance of vacuum,η0, the permittivity,
ε0, and the permeability,µ0, of vacuum.

The Maxwell equations model the dynamics of the electromagnetic fields in macroscopic
media. They are{

∇ ×E(r, t) = −∂tB(r, t) (Faraday’s law)

∇ ×H(r, t) = J(r, t)+ ∂tD(r, t) (Ampère–Maxwell’s law)
(2.1)

where the current and charge densities are connected via the equation of continuity

∇ · J(r, t)+ ∂tρ(r, t) = 0. (2.2)

In order to solve the Maxwell equations, a constitutive law must be imposed on the fields.
In vacuum,D = ε0E andB = µ0H. The constitutive relations used in this paper are
introduced in section 3.

Since the magnetic flux density is solenoidal, there exists a vector potential,A(r, t),
such that

B(r, t) = ∇ ×A(r, t).
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Substituting this result into Faraday’s law above shows that in each simply connected region,
there exists a scalar potential,V (r, t), such that

E(r, t) = −∇V (r, t)− ∂tA(r, t).
The vector and scalar potentials are not unique [7]. In vacuum, this fact can be exploited to
impose supplementary conditions, such as the Lorenz gauge, on the potentials, cf section 4.

All electromagnetic fields, potentials, and source terms are assumed to vanish before a
certain timet , say t = 0. Requiring initially quiescent quantities is compatible with using
the temporal antiderivative:

(∂−1
t f )(r, t) =

∫ t

−∞
f (r, t ′) dt ′. (2.3)

Notice that the temporal derivative and antiderivative commute:∂−1
t ∂t = ∂t∂−1

t = 1.

3. Constitutive relations

The constitutive relations of a temporally dispersive, simple (linear, homogeneous, and
isotropic) medium can be written as [8]{

D(r, t) = ε0(E(r, t)+ (χe ∗E)(r, t)) = ε0[εE](r, t)

B(r, t) = µ0(H(r, t)+ (χm ∗H)(r, t)) = µ0[µH](r, t)

where the time-varying functionsχe(t) andχm(t) are the electric and magnetic susceptibility
kernels of the medium, respectively, and the temporal integral operatorsε = (1+ χe∗) and
µ = (1+ χm∗) are therelative permittivity and permeability operators, respectively. The
asterisk denotes temporal convolution:

(χ ∗E)(r, t) =
∫
χ(t − t ′)E(r, t ′) dt ′.

An isotropic medium is said to be nonmagnetic ifχm(t) = 0 (i.e.µ = 1).
The susceptibility kernelsχe(t) and χm(t) vanish for t < 0 due to causality and,

furthermore, they are assumed to be smooth and bounded fort > 0. This implies that the
wavefront propagates through the medium with the speed of light in vacuum,c0.

Pulse propagation problems in temporally dispersive, simple media can be simplified
by introducing the index of refractionN = (1+ N∗) and the relative intrinsic impedance
Z = (1+ Z∗), both of which being intrinsic temporal integral operators of the medium.
By definition (cf [9]),

N 2 = εµ Z2ε = µ (3.1)

or equivalently,

N = Zε NZ = µ. (3.2)

The refractive kernel,N(t), and the impedance kernel,Z(t), are well defined by these
equations; in particular, these kernels vanish fort < 0 and are bounded and smooth for
t > 0. Specifically, the refractive kernel satisfies the nonlinear Volterra integral equation of
the second kind

(N ∗N)(t)+ 2N(t) = χe(t)+ χm(t)+ (χe ∗ χm)(t)
(cf the first operator identity in (3.1)), whereupon the impedance kernel can be obtained by
solving the linear Volterra integral equation of the second kind

N(t)+ Z(t)+ (N ∗ Z)(t) = χm(t)
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(cf the second identity in (3.2)). In addition to the refractive index and intrinsic impedance,
it is convenient to introduce the wavenumber operator

K = c−1
0 ∂tN = c−1

0 ∂t (1+N∗).
Inverses of the operators introduced above exist and are well-defined temporal integral

operators. For instance, the inverse of the refractive index can be written asN−1 =
(1+Nres∗), where the resolvent kernel,Nres(t), satisfies the linear Volterra integral equation
of the second kind

N(t)+Nres(t)+ (N ∗Nres)(t) = 0.

The resolvent kernel vanishes fort < 0 and is bounded and smooth fort > 0. In the
nonmagnetic case, the impedance operatorZ is the inverse of the refractive operatorN .
Notice thatK−1 also exists.

The notationK2 = KK (K−2 = K−1K−1) is also employed.

4. The retarded fundamental solution

The dispersive Lorenz gauge,∇ ·A+c−2
0 ∂tN 2V = 0, relates the vector and scalar potentials

in the dispersive media to each other. Using this gauge and the equation of continuity, (2.2),
leads to potential representations of the electric and magnetic fields:{

E = (−I +∇∇K−2) · ∂tA
H = µ−1

0 µ−1(∇ × I) ·A.
(4.1)

The scalar and vector potentials satisfy the dispersive wave equations

(−1+K2)V = ε−1
0 ε−1ρ (−1+K2)A = µ0µJ .

These equations can be solved in terms of the retarded fundamental solution,E(r; t), of the
dispersive wave operator

−1+K2. (4.2)

The following formal definition is made.

Definition. Let N(t) be a function of time, which vanishes fort < 0 and is bounded and
smooth for t > 0. A distribution in the three-dimensional space and in time,E(r; t) is
said to be a fundamental solution of the dispersive wave operator (4.2) if it satisfies the
dispersive wave equation,(−1+K2)E = δ0⊗ δ0, whereδ0 = δ(r) is the Dirac measure in
R3, andδ0 = δ(t) the Dirac measure in time.

The retarded (causal) fundamental solution,E(r; t), of the dispersive wave operator is
defined in the following theorem.

Theorem. Let N(t) be a function of time, which vanishes fort < 0 and is bounded and
smooth fort > 0. Then the distribution

E(r; t) = q(r) 1

4πr

(
δ

(
t − r

c0

)
+ P

(
r; t − r

c0

))
(4.3)

whereq(r) satisfies the ordinary differential equation

c0∂rq(r) = −N(+0)q(r) q(0) = 1 (4.4)
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andP(r; t) satisfies the integro-differential equation

c0∂rP (r; t) = −N ′(t)− (N ′(·) ∗ P(r; ·))(t) P (0; t) = 0 (4.5)

is a fundamental solution of the dispersive wave operator (4.2). The propagator kernel,
P(r; t), vanishes fort < 0 and is bounded and smooth in each bounded time interval
0< t < T , whenceE(r; t) = 0 for t < r/c0.

The well known result for vacuum,E0(r; t) = 1/(4πr) δ(t−r/c0), is obtained from (4.3)
by settingN = 0.

Using equations (4.4) and (4.5) and the fact that∂rδ(t−r/c0) = −c−1
0 ∂tδ(t−r/c0), show

that the retarded fundamental solution,E(r; t), satisfies the integro-differential equation

∂r(rE) = −K(rE) 4π lim
r→0

rE = δ0. (4.6)

The gradient ofE (r; t) is then given by

∇E = −r
(
Pf.

1

r3
+ 1

r2
K
)
(rE) = −

(
1

r2
+ 1

r
K
)
(rE) (4.7)

where Laurent Schwartz’pseudo-fonctionPf.(1/r3) is defined in appendix A. Taking the
divergence of∇E , using (4.7) and the rules of differentiation in appendix A give

1E = K2E + 4π

3
(r · ∇δ0)rE .

Using the limit value in (4.6) proves the theorem.
The functionq(r) in (4.4) can be calculated explicitly:

q(r) = exp

(
− r
c0
N(+0)

)
. (4.8)

A closed-form expression for the propagator kernel satisfying (4.5) cannot be obtained in
general. However, it can be represented by an infinite function series:

P(r; t) =
∞∑
k=1

1

k!

(
− r
c0

)k (
(N ′∗)k−1N ′

)
(t). (4.9)

Using the general identity for causal convolutions

t

k functions︷ ︸︸ ︷
(f ∗ . . . ∗ f )

k!
= tf ∗

k−1 functions︷ ︸︸ ︷
(f ∗ . . . ∗ f )
(k − 1)!

k > 1

which can be proved by mathematical induction, the propagator kernel is seen to satisfy the
temporal Volterra integral equation of the second kind [9],

tP (r; t) = F(r; t)+ (F (r; ·) ∗ P(r; ·))(t) F (r; t) = −t r
c0
N ′(t). (4.10)

This integral equation can be used in numerical computations. The initial condition becomes
P(r;+0) = −N ′(+0)r/c0.

The importance of fundamental solutions of the dispersive wave operator (4.2) is
analogous to the importance of fundamental solutions of differential operators with
constant coefficients: ifu(r, t) and f (r, t) are distributions in space and time, such that
(−1+K2)u = f , then

u(r, t) =
∫
R3

(∫
E(r − r′; t − t ′)f (r′, t ′) dt ′

)
dv′.
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Consequently, the volume representations of the vector and scalar potentials in an
unbounded, temporally dispersive, simple medium become

A(r, t) =
∫
R3

∫
E(r − r′; t − t ′)µ0[µJ ](r′, t ′) dt ′ dv′

V (r, t) =
∫
R3

∫
E(r − r′; t − t ′)ε−1

0 [ε−1ρ](r′, t ′) dt ′ dv′.

Formally, in view of (4.6), the time-retarded fundamental solution of the dispersive wave
operator,E(r; t), can be expressed in terms of the temporal integro-differential operator,

E(r; ·)∗ = 1

4πr
exp(−rK) (4.11)

which is to be interpreted in terms of the Mclaurin series for the exponential function.
Using the characteristic property of the exponential, the operator (4.11) can be

factored in three terms: the retarded delta function,δ(t − r/c0)∗ = exp(−r/c0∂t ), the
wavefront propagatorq(r)/(4πr), whereq(r) is given by (4.8), and the wave propagator,
(δ(·) + P(r; ·))∗ = exp(−(r/c0)N

′(·)∗). The wave propagator is a temporal integral
operator interpreted in terms of the Mclaurin series for the exponential, cf (4.9). The wave
propagator and the wavefront propagator concepts are well known from one-dimensional
propagation problems involving temporally dispersive media (see, e.g. [10]).

5. Green dyadics

The time-domain Green dyadic for the electric field,GE(r; t), is defined by

E(r, t) =
∫
R3

∫
GE(r − r′; t − t ′) · µ0∂t ′ [µJ ](r′, t ′) dt ′ dv′. (5.1)

According to the potential representation (4.1), the Green dyadicGE(r; t) becomes

GE = −(I −∇∇K−2)E (5.2)

where I is the unit dyadic. This definition of the Green dyadic coincides with the one
used by Van Bladel [1] (frequency domain) and, except for a multiplicative sign, with the
one used by Lindell [3] (frequency domain), and by Marx and Maystre [6] (time domain,
vacuum).

As in the time-harmonic analysis, the second spatial differentiation must be carried out
with care in the case in which the field-point lies within the current distribution. For a
result obtained by using Schwartz’pseudo-fonctions, see appendix A. For a more general
time-harmonic approach, based on first omitting a not necessarily spherical neighbourhood
of the field-point before differentiation, see Van Bladel [1].

The time-domain Green dyadic for the magnetic field,GH (r; t), is defined by

H(r, t) =
∫
R3

∫
GH (r − r′; t − t ′) · µ0∂t ′ [µJ ](r′, t ′) dt ′ dv′. (5.3)

The Green dyadicGH (r; t) is given by

GH = (∇ × I)µ−1
0 ∂−1

t µ−1E = −η−1
0 Z−1

(
1

r2
K−1+ 1

r

)
(rE × I) (5.4)

where equation (4.7) has been used. SincerE × I is regular, GH has merely a weak
singularity at the origin.
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The Maxwell equations (2.1) show that the Green dyadics for the electric and magnetic
fields are related through

∇ ×GE = −µ0∂tµGH ∇ ×GH = ε0∂tεGE + Iµ−1
0 ∂−1

t µ−1 [δ0⊗ δ0] . (5.5)

Obviously, the dyadicsGE(r; t) and GH (r; t) satisfy the condition of causality, i.e.
GE(r; t) = 0, GH (r; t) = 0 for t < 0. Notice that the symmetric dyadicGE is symmetric
in the spatial variables and that the antisymmetric dyadicGH is antisymmetric in the spatial
variables; therefore, the following relations hold:

GE(r − r′; t − t ′) = GT
E(r
′ − r; t − t ′) GH (r − r′; t − t ′) = GT

H (r
′ − r; t − t ′).

Recall that the transpose of a dyadicA is a dyadicAT such thatAT · F = F · A for each
vectorF and thatA is said to be symmetric ifA = AT and antisymmetric ifA = −AT .

6. The complex time-dependent field

The notion of complex time-dependent fields is not new in electromagnetic field analysis.
These fields have been used before under different names, see e.g. [11, 7, 12]. In this paper,
a complex, time-dependent electromagnetic field,Q(r, t), is defined by

Q = 1
2(E − iη0ZH) (6.1)

where i is the imaginary unit, cf [13]. Note that the vector fieldsE(r, t) andH(r, t) are
real-valued. Using this field reduces the Maxwell equations to the compact form

∇ ×Q = −iKQ− 1
2iη0ZJ . (6.2)

Observe, thatE = Q+Q∗ andη0H = iZ−1(Q−Q∗), whereQ∗ is the complex conjugate
of Q.

In analogy with (5.1) and (5.3), the time-domain Green dyadic for the complex
electromagnetic field,GQ(r; t), is defined by

Q(r, t) =
∫
R3

∫
GQ(r − r′; t − t ′) · µ0∂t ′ [µJ ](r′, t ′) dt ′ dv′ (6.3)

thus, cf (6.1),

GQ = 1
2(GE − iη0ZGH ) = − 1

2(I −∇∇K−2+ i(∇ × I)K−1)E . (6.4)

Observe, that,GE = GQ +G∗Q, and,η0GH = iZ−1(GQ −G∗Q), whereG∗Q is the complex
conjugate ofGQ.

The differential equations (5.5) show that the Green dyadic for the complex
electromagnetic field satisfies the integro-differential equation

2[∇ × I + iIK] ·GQ = −iIK−1[δ0⊗ δ0]. (6.5)

Obviously, the dyadicGQ(r; t) is causal:GQ(r; t) = 0 for t < 0. Notice that

GQ(r − r′; t − t ′) = GT
Q(r

′ − r; t − t ′). (6.6)

In appendix A, the Green dyadic (6.4) is given explicitly in terms of Schwartz’pseudo-
fonctions.
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7. Example

7.1. Point dipole in an unbounded dispersive medium

An electric point dipole concentrated at the origin which is flashed on and off att = 0
is characterized by the dipole momentpδ0, wherep is a constant vector. For this source
distribution, the charge density isρ = −(p · ∇)(δ0 ⊗ δ0). According to the equation of
continuity (2.2), the current density becomesJ = p∂t (δ0⊗δ0). Straightforward calculations
using equations (6.3) and (A.1) lead to the expression

2ε0Q = −1

3
pε−1[δ0⊗ δ0] + (urur − I) · pc−2

0 ∂2
t µE

+(3urur − I) · p
(
Pf.

(
1

r3

)
c0∂
−1
t ε−1+ 1

r2
Z
)
c−1

0 ∂t (rE)

+i

(
1

r2
+ 1

r
K
)
c−1

0 ∂tZ(rE × p)

for the complex time-dependent electromagnetic field due to the electric point dipole.
For the electric and magnetic fields, one obtains

ε0E = − 1
3p(1+ χe∗)−1[δ0⊗ δ0] + (urur − I) · pc−2

0 ∂2
t (1+ χm∗)E

+ (3urur − I) · p
(
Pf.

(
1

r3

)
(1+ χe∗)−1(rE)+ 1

r2
c−1

0 ∂t (1+ Z∗)(rE)
)
(7.1)

and

H =
(

1

r2
+ 1

r
c−1

0 ∂t (1+N∗)
)
∂t (p× rE). (7.2)

If p = uzp, there are only three nonvanishing field components:

E = urEr + uθEθ H = uφHφ (7.3)

whereur , uθ , anduφ are the basis vectors in spherical coordinates. Numerically, fieldsE
andH can be obtained by first solving the integral equation (4.10) and then performing all
the convolutions in (7.1) and (7.2). This procedure is time and memory consuming.

Using the technique introduced in [9] gives an approximation to the dipole fields with
respect to the slowly varying components (second forerunner approximations). Applying
this technique, representation (4.11) is approximated by

E(r; ·)∗ ≈ 1

4πr
exp

(
− r
c0
((1+ n1)∂t + n2∂

2
t + n3∂

3
t )

)
= Ẽ(r; ·)∗ (7.4)

where

Ẽ(r; t) = 1

4πr
exp

(
n3

2

27n2
3

r

c0
− n2

3n3
(t − t1(r))

)
Ai(sign(n3)(t − t1(r))/t3(r))

t3(r)

nm = (−1)m−1

(m− 1)!

∫ ∞
0
tm−1N(t) dt m = 1, 2, 3

t1(r) =
(
n1+ 1− n2

2

3n3

)
r

c0
t3(r) =

(
3|n3|r
c0

)1
3

and Ai(x) is the Airy function of the first kind. Here, it is assumed that the refractive
coefficientsnm exist and are finite. To get asymptotic expressions for the dipole fields,
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approximate the convolution operators(1+Z∗), (1+χm∗), and(1+χeres∗) = (1+χe∗)−1

in (7.1) and (7.2) by the first three terms in their series representations (see [9]), e.g.

(1+ Z∗) ≈ (1+ z1)+ z2∂t + z3∂
2
t

where the moments are

zm = (−1)m−1

(m− 1)!

∫ ∞
0
tm−1Z(t) dt m = 1, 2, 3.

Substituting these approximations and (7.4) into (7.1) and (7.2) and using the Airy equation
give approximations to the dipole fields in terms of the Airy function and its first derivative.
The result for the nonmagnetic case (χm = 0) is given explicitly in appendix B. These
expressions contain only algebraic combinations of the known quantities, the well known
Airy function, and its first derivative, which are standard functions in, e.g. MATLAB 5.
Consequently, no large computer capacities are needed to calculate the asymptotic fields.

Under certain conditions on the susceptibility kernels, one can get better approximations
to the dipole fields by using more terms in the series decompositions of convolution operators
in (7.4), (7.1) and (7.2). The result is then expressed in terms of hyper-Airy functions [9].

Note that this technique cannot be used to obtain the first precursor (the wavefront
behaviour) of the fields.

7.2. Numerical calculations

In this section, the asymptotic approximations to the dipole fields (7.3) given in appendix B
are specified for two frequently used material models. The results are compared with the
numerical solution obtained by first solving the integral equation (4.10) and then performing
all the convolutions in (7.1) and (7.2).

The first material model to be discussed is the Debye model [14]. The susceptibility
kernels are given by

χe(t) = H(t)α exp(−βt) χm(t) = 0

where α is a frequency and 1/β the relaxation time. The Debye model is a good
approximation for polar liquids (e.g. water, alcohols) at microwave frequencies. For
the Debye model, all the coefficients in the asymptotic expressions can be calculated
analytically. They are (cf [9])

χ1 = α

β
χ2 = − α

β2
χ3 = α

β3

χres1= − χ1

1+ χ1
χres2= −χ2(1+ χres1)

1+ χ1
χres3= − (1+ χres1)χ3+ χres2χ2

1+ χ1

n1 =
√

1+ α
β
− 1 n2 = − α

2β2
√

1+ α
β

n3 = 4βα + 3α2

8β4(1+ α/β)3/2

z1 = − n1

1+ n1
z2 = −n2(1+ z1)

1+ n1
z3 = − (1+ z1)n3+ z2n2

1+ n1
.

In figures 1–3, the numerical results, as well as the asymptotic approximations to the
dipole fields in a Debye medium characterized by the parametersα = 3× 1010 s−1 and
β = 1.2× 1010 s−1 at a distance of 1 m from the dipole at the observation angleθ = π/4,
are presented. The dipole moment ispδ(t) = 10−17δ(t) C ·m · s. The figures show good
agreement between the numerical results and the approximations.
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Figure 1. The field Eθ from a dipole characterized byp = uz10−17 C · m · s in a Debye
medium at a distancer = 1 m from the dipole at the observation angleθ = π/4. The medium
is characterized by the parametersα = 3× 1010 s−1, β = 1.2× 1010 s−1.

Figure 2. The fieldEr from a dipole in a Debye medium. For details see the caption of figure 1.

The second example is the single-resonance Lorentz model [14]. The susceptibility
kernels are given by

χe(t) = H(t)ω
2
p

ν0
sin(ν0t) exp

(
−νt

2

)
χm(t) = 0

whereω0, ωp, andν are the harmonic, plasma, and collision frequencies of the medium,

respectively, andν0 =
√
ω2

0 − ν2/4. The Lorentz model is often used for solids at infrared
and optical frequencies. For this model, the coefficients in the asymptotic expressions are
(cf [9])

χ1 =
ω2
p

ω2
0

χ2 = −
νω2

p

ω4
0

χ3 = −
ω2
p(ω

2
0 − ν2)

ω6
0

χres1= − χ1

1+ χ1

χres2= −χ2(1+ χres1)

1+ χ1
χres3= − (1+ χres1)χ3+ χres2χ2

1+ χ1
n1 =

√
1+ ω

2
p

ω2
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− 1
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−νω2

p

2ω3
0

√
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0 + ω2
p

n3 = −1

2ω5
0

√
ω2

0 + ω2
p

(
ω2
p(ω

2
0 − ν2)+ ν2ω4

p

4(ω2
0 + ω2

p)

)
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Figure 3. The fieldHφ from a dipole in a Debye medium. For details see the caption of
figure 1.

Figure 4. Propagation of theθ -component of the fieldE from a dipole characterized by
p = uz10−17 C · m · s in a Debye medium (α = 3× 1010 s−1, β = 1.2× 1010 s−1). Eθ is
presented for three propagation distances:r = 1 m, r = 10 m, andr = 100 m (θ = π/4). Note
that different scales are used for different distances. The fieldsEr andHφ change in a similar
way.

z1 = − n1

1+ n1
z2 = −n2(1+ z1)

1+ n1
z3 = − (1+ z1)n3+ z2n2

1+ n1
.

The numerical results and the asymptotic approximations to the dipole fields in a single-
resonance Lorentz medium characterized by the parametersωp =

√
20 × 1016 s−1,

ω0 = 4 × 1016 s−1 and ν = 56× 1014 s−1 at a distance of 10−6 m from the dipole
at the observation angleθ = π/4 are displayed in figures 5–7. The dipole moment is
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Figure 5. The fieldEθ from a dipole characterized byp = uz10−17 C · m · s in a Lorentz
medium at a distancer = 10−6 m from the dipole at the observation angleθ = π/4. The
medium is characterized by the parametersωp =

√
20× 1016 s−1, ω0 = 4× 1016 s−1 and

ν = 56× 1014 s−1.

Figure 6. The fieldEr from a dipole in a Lorentz medium. For details see the caption of
figure 5.

pδ(t) = 10−17δ(t) C · m · s. The parameters are taken from Karlsson and Rikte [9]. The
figures show that even in this much more dynamical case the first few oscillations of the
second precursor (the slowly varying components) are correctly approximated. As was
already mentioned, it is impossible to reconstruct the fast oscillations (the first precursor)
using the introduced technique.

Figures 4 and 8 illustrate the propagation of the electromagnetic pulse due to a dipole
in a Debye and a Lorentz medium, respectively. Only the asymptotic approximations with
respect to the slowly varying components can be calculated at large propagation depths.
Note that the timet in all the figures denotes the wavefront time, i.e.t = 0 atr = r0 when
the wavefront arrives at the pointr = r0.
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Figure 7. The fieldHφ from a dipole in a Lorentz medium. For details see the caption of
figure 5.

Figure 8. Propagation of theθ -component of the fieldE from a dipole characterized by
p = uz10−17 C · m · s in a Lorentz medium (ωp =

√
20× 1016 s−1, ω0 = 4 × 1016 s−1,

ν = 56× 1014 s−1). Eθ is presented for three propagation distances:r = 10−6 m, r = 10−5 m,
and r = 10−4 m (θ = π/4). Note that different scales are used for different distances. The
fieldsEr andHφ change in a similar way.

8. Surface integral representations

In this section, the Green dyadicGQ(r; t) is used to obtain surface integral representation of
the complex time-dependent electromagnetic fieldQ(r, t) in a temporally dispersive simple
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medium. The method described is well known in time-harmonic investigations, but seems
to be new in time-domain analysis of pulse propagation in dispersive materials.

Let V− ⊂ R3 denote a bounded open domain,S = ∂V− its regular surface, and
V+ = R3 \ V −. In the rest of this paper,un = un(r) denotes the outward (with respect to
V−) unit normal vector toS at r (the notationu′n = un(r′) is also used). The following
limit values of the complex fieldQ(r, t) will be needed:

Q±(r, t) = lim
V±3r′→r

Q(r′, t) r ∈ S.

In this paragraph, the bounded domainV− is assumed to be filled with a temporally
dispersive, simple (linear, homogeneous, and isotropic) medium, whereas the medium filling
V+ is arbitrary. The aim is to express the complex fieldQ(r, t), r ∈ V−, in terms of its
tangential components at the boundary,un ×Q−(r, t), r ∈ S, and the current density in
the volume,J(r, t), r ∈ V−. Substituting equations (6.2) and (6.5) into the rule

∇′ · (Q(r′, t ′)×GQ(r
′ − r; t − t ′))

= (∇′ ×Q(r′, t ′)) ·GQ(r
′ − r; t − t ′)−Q(r′, t ′) · (∇′ ×GQ(r

′ − r; t − t ′))
gives

∇′ · (Q(r′, t ′)×GQ(r
′ − r; t − t ′)) = 1

2iδ(r − r′) δ(t − t ′)[K−1Q](r, t)

− 1
2iη0[ZJ ](r′, t ′) ·GQ(r

′ − r; t − t ′)− i[KQ](r′, t ′) ·GQ(r
′ − r; t − t ′)

+iQ(r′, t ′) · [KGQ](r′ − r; t − t ′). (8.1)

Since the associative and commutative laws hold for causal convolutions, the last two
terms in the right member cancel upon integration with respect tot ′. Upon integrating the
result over the bounded volumeV− as well, Gauss theorem for dyadics can be applied:∮
S
un · A dS = ∫

V−
∇ · A dv. Using relation (6.6) and the equality

(u′n ×Q−(r′, t ′)) ·GQ(r
′ − r; t − t ′) = u′n · (Q−(r′, t ′)×GQ(r

′ − r; t − t ′))
yields the final result, which can be referred to as Huygens’ principle:∮
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′ = 1

2i[K−1Q](r, t)

− 1
2i
∫
V−

∫
GQ(r − r′; t − t ′) · η0[ZJ ](r′, t ′) dt ′ dv′ r ∈ V−. (8.2)

The first term in the right member does not arise if the field pointr is chosen exterior to the
volumeV−. The second term in the right member vanishes if the volumeV− is source-free.
Decomposing the complex vector field into its real and imaginary parts yields the surface
integral representations of the electric and magnetic fields.

Suppose now that the unbounded domainV+ consists of a temporally dispersive,
simple medium. The medium fillingV− is arbitrary. Furthermore, assume that the
sources are localized in space. To express the fieldQ(r, t), r ∈ V+ in terms of
the tangential fieldun × Q+(r, t), r ∈ S and the current densityJ(r, t) r ∈ V+,
introduce an extra surface, say a sphereSR of radius R, containing the sources and
the scatterer (domainV−) and apply the above method to the finite volume between
S and SR. For every finite time interval [0, T ], R can be chosen large enough so
that Q(r, t) = 0 and J(r, t) = 0 for all r outside SR and t ∈ [0, T ], as a
consequence of the finite speed of the wave front in dispersive materials [15]. This
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means that the surface integral overSR is zero and the following integral representation
is valid:∮
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q+(r′, t ′)]dt ′ dS ′ = − 1

2i[K−1Q](r, t)

+ 1
2i
∫
V+

∫
GQ(r − r′; t − t ′) · η0[ZJ ](r′, t ′) dt ′ dv′ r ∈ V+. (8.3)

9. Surface integral equations

In this section, the aim is to obtain surface integral equations for the tangential components
of the fields. The materials in both domains,V+ andV−, then have to be specified. The
analysis is similar to the fixed-frequency technique used by Ström [5]. First, by going to
the limit r → S± (i.e. V± 3 r → S) in (8.2) and (8.3), surface integralrelations for the
complex fieldsQ±(r, t) are obtained. Then, using the boundary conditions, surface integral
equations can be derived.

Equation (8.2) can be written as
i
2[K−1Q](r, t)

0

}
= i

2
[K−1Qi ](r, t)

+
∮
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′

{
r ∈ V−
r ∈ V+

(9.1)

where the source term

Qi (r, t) =
∫
V−

∫
GQ(r − r′; t − t ′) · µ0∂t ′ [µJ ](r′, t ′) dt ′ dv′

= 1
2(Ei (r, t)− iη0[ZHi ](r, t)) (9.2)

is supposed to be known. From the Gauss surface divergence theorem, it follows that∮
S

(∇∇E(r − r′; t − t ′)) · (u′n ×Q−(r′, t ′)) dS ′

= ∇
∮
S

(E(r − r′; t − t ′))∇′S · (u′n ×Q−(r′, t ′)) dS ′ (9.3)

where∇S · is the surface divergence [4]. Now one can write the surface integral on the
right-hand side of (9.1) as∮
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′

= − 1
2

∮
S

∫
E(r − r′; t − t ′)u′n ×Q−(r′, t ′) dt ′ dS ′

+ 1
2∇

∮
S

∫
[K−2E ](r − r′; t − t ′)∇′S · (u′n ×Q−(r′, t ′)) dt ′ dS ′

− i

2
∇ ×

∮
S

∫
[K−1E ](r − r′; t − t ′)(u′n ×Q−(r′, t ′)) dt ′ dS ′ r /∈ S.

(9.4)

The definition of the surface divergence∇S · can be found in [4]. In the limitr →
S±, representation (9.1) transforms into the surface integral relation for the complex
field Q−(r, t). Caution must be exercised when handling the terms containing the
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spatial derivatives ofE(r; t) because they are discontinuous acrossS. Straightforward
generalization of the results in [5] (see also [16, appendix C]) gives

∇
∮
S

∫
E(r − r′; t − t ′)f (r′, t ′) dt ′ dS ′ =

∮
S

∫
∇E(r − r′; t − t ′)f (r′, t ′) dt ′ dS ′

± 1
2unf (r, t) r→ S±

∇ ×
∮
S

∫
E(r − r′; t − t ′)F (r′, t ′) dt ′ dS ′ =

∮
S

∫
(∇E(r − r′; t − t ′))F (r′, t ′) dt ′ dS ′

± 1
2un × F (r, t) r→ S±

for any sufficiently regular scalar fieldf (r, t) and vector fieldF (r, t). In these expressions,
all integrals on the right-hand sides exist as principal value integrals. Using (9.4) and the
jump relations above, one obtains forr ∈ S

i
2[K−1Q−](r, t)

0

}
= i

2
[K−1Qi ](r, t)

+
∮
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′))dt ′ dS ′

±1

4
un∇S · (un × [K−2Q−](r, t))∓ i

4
un × (un × [K−1Q−](r, t)). (9.5)

The second term on the right-hand side of (9.5) is interpreted as∮
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′

= − 1
2

∮
S

∫
E(r − r′; t − t ′)u′n ×Q−(r′, t ′) dt ′ dS ′

+ 1
2

∮
S

∫
∇([K−2E ](r − r′; t − t ′))∇′S · (u′n ×Q−(r′, t ′)) dt ′ dS ′

− i

2

∮
S

∫
∇([K−1E ](r − r′; t − t ′))× (u′n ×Q−(r′, t ′)) dt ′ dS ′ r ∈ S

(9.6)

where the integrals exist as principal value integrals. Using the Maxwell equations (6.2)
and the fact that∇S · (un×Q−) = −un · (∇ ×Q−), both equations (9.5) reduce to (r ∈ S)

i

4
[K−1Q−](r, t) = i

2
[K−1Qi ](r, t)+

∮
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′

(9.7)

where the surface integral term is given by (9.6).
The integral relation based on equation (8.3) can be derived in the same way. The result

is (r ∈ S)

i

4
[K−1Q+](r, t) = i

2
[K−1Qi ](r, t)−

∮
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q+(r′, t ′)) dt ′ dS ′

(9.8)

where the source termQi (r, t) is now given by (9.2) with the spatial integration over the
domainV+ instead ofV−.

Notice that in (9.7) all the parameters (the operatorsN , Z, ε andµ) correspond to the
domainV−, whereas in (9.8), the parameters describe the domainV+. For the case in which
both domainsV± are temporally dispersive, the intrinsic integral operatorsN , Z, ε, andµ,
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as well as the dispersive fundamental solutions,E(r; t) in the domainsV±, are endowed
with the subscripts±, respectively.

Two standard scattering problems are now discussed:
• the surfaceS bounds a perfectly conducting scatterer;
• the surfaceS is an interface between two dispersive materials.

9.1. Perfectly conducting scatterer

In this section,V− is a perfect conductor andV+ is a temporally dispersive medium. The
boundary condition on the surfaceS is un × E+(r, t) = 0. Taking the cross product of
both members of (9.8) withun and using the boundary condition give the following integral
equation for the surface current densityJ eS(r, t) := un ×H+(r, t), r ∈ S:

J eS(r, t) =
i4

η0
Z−1

(
un ×Qi (r, t)

+un
∮
S

∫
GQ(r − r′; t − t ′) · µ0∂t ′ [µJ

e
S ](r′, t ′) dt ′ dS ′

)
.

Separating this equation into its real and imaginary parts gives two alternative integral
equations for the surface current density. Explicitly, (r ∈ S)

J eS(r, t) = 2un ×Hi (r, t)+ 2un ×
∮
S

∫
∇E(r − r′; t − t ′)× J eS(r′, t ′) dt ′ dS ′

0= un ×Ei (r, t)− 1

c0
un ×

∮
S

∫
∂t [µE ](r − r′; t − t ′)η0J

e
S(r
′, t ′) dt ′ dS ′

+c0un ×
∮
S

∫
∇∂−1

t [ε−1E ](r − r′; t − t ′)∇′S · η0J
e
S(r
′, t ′) dt ′ dS ′

where the surface integrals exist as principal value integrals. Notice that the first of these
integral equations is of the second kind, while the second is of the first kind. These equations
can be used for numerical calculations.

The cavity problem (V− is a temporally dispersive medium andV+ is a perfect
conductor) can be treated analogously.

9.2. Permeable scatterer

If the surfaceS is an interface between two different temporally dispersive materials, then
the boundary conditions are

un ×E+(r, t) = un ×E−(r, t) =: JmS (r, t)

un ×H+(r, t) = un ×H−(r, t) =: J eS(r, t).

Suppose that the bounded domainV− is source-free. Taking the cross product of the left-
and right-hand sides of equations (9.7) and (9.8) withun and using the boundary conditions
give four integral equations for the surface fieldsJmS (r, t) andJ eS(r, t):

η0J
e
S(r, t) = 2un × η0Hi (r, t)+ 2

c0
un ×

∮
S

∫
∂t [ε+E+](r − r′; t − t ′)JmS (r′, t ′) dt ′ dS ′

−2c0un ×
∮
S

∫
∇∂−1

t [µ−1
+ E+](r − r′; t − t ′)∇′S · JmS (r′, t ′) dt ′ dS ′

+2un ×
∮
S

∫
∇E+(r − r′; t − t ′)× η0J

e
S(r
′, t ′) dt ′ dS ′ (9.9)
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JmS (r, t) = 2un ×Ei (r, t)− 2

c0
un ×

∮
S

∫
∂t [µ+E+](r − r′; t − t ′)η0J

e
S(r
′, t ′)dt ′ dS ′

+2c0un ×
∮
S

∫
∇∂−1

t [ε−1
+ E+](r − r′; t − t ′)∇′S · η0J

e
S(r
′, t ′) dt ′ dS ′

+2un ×
∮
S

∫
∇E+(r − r′; t − t ′)× JmS (r′, t ′) dt ′ dS ′ (9.10)

η0J
e
S(r, t) = −

2

c0
un ×

∮
S

∫
∂t [ε−E−](r − r′; t − t ′)JmS (r′, t ′)dt ′ dS ′

+2c0un ×
∮
S

∫
∇∂−1

t [µ−1
− E−](r − r′; t − t ′)∇′S · JmS (r′, t ′) dt ′ dS ′

−2un ×
∮
S

∫
∇E−(r − r′; t − t ′)× η0J

e
S(r
′, t ′) dt ′ dS ′ (9.11)

JmS (r, t) =
2

c0
un ×

∮
S

∫
∂t [µ−E−](r − r′; t − t ′)η0J

e
S(r
′, t ′) dt ′ dS ′

−2c0un ×
∮
S

∫
∇∂−1

t [ε−1
− E−](r − r′; t − t ′)∇′S · η0J

e
S(r
′, t ′) dt ′ dS ′

−2un ×
∮
S

∫
∇E−(r − r′; t − t ′)× JmS (r′, t ′) dt ′ dS ′ (9.12)

where the surface integrals exist as principal value integrals. Since the surface divergences
∇S · J eS and∇S · JmS enter these equations, they are unattractive from a numerical point
of view. Moving the derivative from the surface fields to the∇E-terms (integration by
parts) does not reduce this inconvenience because then the highly singular second space
derivatives of the kernelE(r − r′; t − t ′) have to be dealt with. However, in the case
when both materials have the same value ofN(0) (N+(0) = N−(0)), one can combine
equations (9.9), (9.11) and equations (9.10), (9.12) so that neither surface divergences nor
highly singular terms appear in the resulting equations.

Operating withµ+ on both sides of (9.9) and withµ− on both sides of (9.11) and
adding the results give

[(µ+ + µ−)η0J
e
S ](r, t) = 2un × [µ+η0Hi ](r, t)

+ 2

c0
un

∮
S

∫
∂t [N 2

+E+ −N 2
−E−](r − r′; t − t ′)JmS (r′, t ′) dt ′ dS ′

−2c0un

∮
S

∫
(∇∇∂−1

t ([E+ − E−](r − r′; t − t ′)) · JmS (r′, t ′) dt ′ dS ′

+2un

∮
S

∫
∇([µ+E+ − µ−E−](r − r′; t − t ′))× η0J

e
S(r
′, t ′) dt ′ dS ′ (9.13)

where integration by parts was used to obtain the third term on the right-hand side. Similarly,
from equations (9.10) and (9.12), it follows that

[ε+ + ε−]JmS (r, t) = 2un × [ε+Ei ](r, t)

− 2

c0
un

∮
S

∫
∂t [N 2

+E+ −N 2
−E−](r − r′; t − t ′)η0J

e
S(r
′, t ′) dt ′ dS ′

+2c0un

∮
S

∫
∇∇∂−1

t ([E+ − E−](r − r′; t − t ′)) · η0J
e
S(r
′, t ′) dt ′ dS ′

+2un

∮
S

∫
∇([ε+E+ − ε−E−](r − r′; t − t ′))× JmS (r′, t ′) dt ′ dS ′. (9.14)
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As before, the surface integrals in equations (9.13) and (9.14) exist as principal value
integrals. Recall thatE±(r, t) = q±(r)/(4πr)(δ(t − r/c0)+ P±(r; t − r/c0)), P(0; t) = 0.
If N+(0) = N−(0), thenq+(r) = q−(r) and the strongest singularities in∇∇-term disappear.
Equations (9.13) and (9.14) are a pair of coupled integral equations of the second kind in the
variablesJ eS(r, t) andJmS (r, t). In principle, they can be used for numerical calculations.

By Fourier transformation with respect to time, the results in [5] can be obtained.

10. Conclusion

This paper concerns electromagnetic pulse propagation in temporally dispersive, simple
media. The analysis is performed in the time domain. Specifically, Green dyadics are
introduced in terms of the retarded fundamental solution of the dispersive wave operator.
The Green dyadics are used to obtain the surface integral representations for time-varying
electromagnetic fields. Surface integral equations for the tangential components of the fields
on the boundary of an impenetrable scatterer and on the interface between two dispersive
materials are obtained.

The use of the complex time-dependent electromagnetic field simplifies the analysis of
propagation problems in isotropic materials. This approach is particularly advantageous in
the analysis of bi-isotropic media. Green dyadics for bi-isotropic media will be discussed
in a subsequent paper.

The numerical example of an electric point dipole shows that the technique in section 7
can successfully be used to obtain the electromagnetic fields at arbitrary distances. General
time-dependent sources can be treated in the same manner. The region where one switches
from the numerical values of fields to the asymptotic expressions (second forerunner
approximations), depends on the medium and the source term of the problem. The described
methods can be used to determine fields from, for example microwave sources (antennas),
and short-pulse optical sources in dispersive media.

The surface integral equations derived in section 9, can be applied to scattering problems
in dispersive media. It is conjectured that they can be solved numerically (using, e.g. method
of moments). Once the surface integral equations in section 9 have been solved, the surface
integral representations in section 8 can be used to obtain the field vectors in the entire
domain of interest.

As was already mentioned, a possible way to generalize these results is to analyse Green
dyadics in more complicated materials.
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Appendix A. Formulae for the Green dyadics

In this appendix, the Green dyadics for the electric field,GE , and for the complex
electromagnetic field,GQ, are derived using Schwartz’pseudo-fonctionsin R3, Pf.(1/rk),
k = 3, 4, 5, see [17]. The Green dyadic for the magnetic field,GH , has already been given,
cf equation (5.4).

Schwartz’pseudo-fonctionsrepresent so-called finite parts of certain divergent integrals
with spherically symmetric integrands. The finite parts can be identified by first omitting a
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small spherical region with radiusε about the origin. The definitions are:〈
Pf.

(
1

r3

)
, φ

〉
= lim

ε→0

(∫
r>ε

φ(r)

r3
dv + 4πφ(0) ln ε

)
〈
Pf.

(
1

r4

)
, φ

〉
= lim

ε→0

(∫
r>ε

φ(r)

r4
dv − 4πφ(0)

1

ε

)
〈
Pf.

(
1

r5

)
, φ

〉
= lim

ε→0

(∫
r>ε

φ(r)

r5
dv − 2πφ(0)

1

ε2
+ 2π

3
1φ(0) ln ε

)
for all test functionsφ. These limits exist; for instance, integration by parts shows that〈

Pf.

(
1

r3

)
, φ

〉
=
∫

ln r∇
(

1

r

)
· ∇φ(r) dv

which is finite for all test functionsφ.
Using these definitions yields the elementary rules of differentiation

∇
(

1

r

)
= −rPf.

(
1

r3

)
∇
(

1

r2

)
= −2rPf.

(
1

r4

)
∇
(
Pf.

(
1

r3

))
= −3rPf.

(
1

r5

)
− 4π

3
∇δ(r)

r2Pf.

(
1

r5

)
= Pf.

(
1

r3

)
rPf.

(
1

r3

)
= r2Pf.

(
1

r4

)
= 1

r2
.

Recall that the product of two distributions is not allowed in general; however, the product
of r andPf.(1/r3) is well defined (= 1/r2).

Use of the above rules, equations (4.6) and (4.7), and the dyadic rules

∇(φA) = φ∇A+ (∇φ)A ∇r = I

leads to an explicit expression for the Green dyadic for the electric field (5.2):

GE = −1

3
IK−2[δ0⊗ δ0] + (urur − I)E + (3urur − I)

(
Pf.

(
1

r3

)
K−2+ 1

r2
K−1

)
rE

whereur = r/r is the unit vector in the direction ofr. By Fourier transformation with
respect to time, the well known fixed frequency result is found [1]. Similarly, the well
known time-domain result for vacuum is obtained by settingK = c−1

0 ∂t (cf [6])

GE(r; t) = −c
2
0

3
Iδ(r)tH(t)+ (urur − I)

δ(t − r/c0)

4πr

+(3urur − I)
c2

0

4π
tH

(
t − r

c0

)
Pf.

(
1

r3

)
whereH(t) is the temporal Heaviside step.

The Green dyadic for the complex electromagnetic field (6.4) becomes

2GQ = −1

3
IK−2[δ0⊗ δ0] + (urur − I)E + (3urur − I)

(
Pf.

(
1

r3

)
K−2+ 1

r2
K−1

)
rE

+i

(
1

r2
K−1+ 1

r

)
(rE × I). (A.1)
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Appendix B. Explicit expressions for the asymptotic approximations of the dipole
fields

In terms of the moments defined in section 7, second forerunner approximations to the
electric and magnetic fields (7.3) from an electric point dipolep = uzp are given explicitly
by the following expressions,r 6= 0:

Er(r, t) ≈ 2 cosθ p exp(a(r)− b(t − t1(r)))
4πε0t3(r)

{
Ai(s(r)(t − t1(r)))

×
[
(1+ χeres1)− χeres2b + χeres3(b

2+ s3(r)(t − t1(r)))
r3

+[−(1+ z1)b + z2(b
2+ s3(r)(t − t1(r)))+ z3(s

3(r)− b3− 3bs3(r)

×(t − t1(r)))](c0r
2)−1

]
+ Ai ′(s(r)(t − t1(r)))

[
χeres2s(r)− 2χeres3bs(r)

r3

+ (1+ z1)s(r)− 2z2bs(r)+ z3(3b2s(r)+ s4(r)(t − t1(r)))
c0r2

]}
Eθ(r, t) ≈ sinθ p exp(a(r)− b(t − t1(r)))

4πε0t3(r)

{
Ai(s(r)(t − t1(r)))

[
b2+ s3(r)(t − t1(r))

rc2
0

+ (1+ χ
e
res1)− χeres2b + χeres3(b

2+ s3(r)(t − t1(r)))
r3

+ [−(1+ z1)b

+z2(b
2+ s3(r)(t − t1(r)))+ z3(s

3(r)− b3− 3bs3(r)(t − t1(r)))](c0r
2)−1

]
+Ai ′(s(r)(t − t1(r)))

[−2bs(r)

rc2
0

+ χ
e
res2s(r)− 2χeres3bs(r)

r3

+ (1+ z1)s(r)− 2z2bs(r)+ z3(3b2s(r)+ s4(r)(t − t1(r)))
c0r2

]}
Hφ(r, t) ≈ sinθp exp(a(r)− b(t − t1(r)))

4πt3(r)

×
{

Ai(s(r)(t − t1(r)))
[−b
r2
+ (1+ n1)(b

2+ s3(r)(t − t1(r))
c0r

+[n2(s
3(r)− b3− 3bs3(r)(t − t1(r)))+ n3(b

4+ 6b2s3(r)(t − t1(r))

−4bs3(r)+ s6(r)(t − t1(r))2)](c0r)
−1

]
+ Ai ′(s(r)(t − t1(r)))

×
[
s

r2
+ −2(1+ n1)bs(r)+ n2(3b2s(r)+ s4(r)(t − t1(r)))

c0r

+n3(2s4(r)− 4b3s(r)− 4bs4(r)(t − t1(r)))
c0r

]}
where

a(r) = n3
2r

27n2
3c0

b = n2

3n3
s(r) = sign(n3)

t3(r)
.
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